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Particle decay in six-dimensional relativity 

E A B Cole 
School of Mathematics, The University, Leeds LS2 9JT, UK 

Received 30 May 1979 

Abstract. Special relativity is developed using a real six-dimensional space-time. It is 
shown that the imposition of parallel time displacements in each frame necessarily implies 
subluminal transformations. Conservation of six-momentum yields the usual three- 
momentum equation together with a vector equation which replaces the scalar energy 
equation of the corresponding four-dimensional theory. On energetic Grounds alone it is 
shown that a particle may decay into a set of particles whose total rest mass is greater than 
that of the original particle, and that particles may be produced from the vacuum state. 
When virtual particle production is considered, this suggests a tentative link between the 
uncertainty principle and a six-dimensional theory with a restriction to small deviations 
from a constant time direction. 

1. Introduction 

When the special Lorentz transformations are extended to deal with superluminal 
reference frames it is found that imaginary quantities enter the linear transformations 
(Recami and Mignani 1974, CorbeA 1975, Pahor and Strnad 1976, Cole 1977, Recami 
1978, 1979 Rep. Prog. Phys. (to be submitted)). A number of workers (Dorling 1970, 
Demers 1975, Kalitzin 1975, Mignani and Recami 1976, Ziino 1977, Cole 1978, 
Dattoli and Mignani 1978, Pappas 1978, VySin 1978) have investigated the idea that 
three time dimensions may be necessary for a fuller description of physical phenomena, 
mainly in connection with these extended transformations. Cole (1977) showed that, 
assuming the constancy of the,speed of light, real linear tranformations could be 
obtained between six real space-time variables for both the subluminal and super- 
luminal cases. In addition to retaining linearity and reality, this approach also has the 
advantage of introducing space-time symmetry when the two extra variables are 
interpreted as time coordinates. 

The major problem associated with this approach is that of interpreting the idea of a 
three-dimensional time in terms of observations on physical systems. Time does not 
manifest itself to us as three-dimensional. It has been shown (Cole 1978) that the time 
dilation effect of special relativity may be recovered by averaging over all possible 
orientations of the three time axes, but this approach is unsatisfactory because it 
destroys the pleasing space-time symmetry and does not explain why observing 
processes produce averages over time but not space orientations. In the context of 
general relativity Cole (1979) has taken the metric 

ds2 = -a(r )  dr2-r2(de2+sin2e d~2)+6(r)[(dt1)2+(dt2)2+(dt3)2]  (1.1) 

for a static spherically symmetric situation, and solved the field equations exactly for 
a ( r )  and b ( r ) .  In the case of planetary motion, the resulting geodesic equations predict a 
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perihelion advance of times that predicted by four-dimensional relativity, giving an 
unsatisfactory prediction of 100.4 seconds of arc per century in the case of Mercury. 

The aim of this paper is to develop the six-dimensional formalism to a point at which 
particle decay may be discussed. The main result is that the six-momentum of a particle 

has the form (L) where p is its three-momentum and E is its vector energy directed 

along its time path. Conservation of six-momentum yields the usual three-momentum 
equation of the four-dimensional theory, while the single energy equation of that theory 
is replaced by a vector equation. When all time displacements are in the same direction 
then this vector equation reduces to the single equation. However, in general there is 
no conservation condition on the energy magnitudes alone, with the result that the 
theory allows decays of the type e- + n + j3 + ve, p + n + e+ + ve, p + n + n-+ and p + p + n- 
to take place quite naturally in free space. 

Clearly, on observational grounds, we are not allowed to consider any general time 
displacement because the isotropic substitution dt’ + (dt’)’+ (dt2)’+ (dt3)’ in (1.1) 
produces the wrong perihelion shift, and the proton and electron are stable. However, 
the last two virtual decay processes above are explained using the uncertainty principle. 
It is thus tentatively proposed that very slight deviations from a common time direction 
are allowed, the magnitude of these deviations being closely linked with Z Z .  This would 
allow the production of virtual particles to occur and explain why time appears to be 
one-dimensional on a macroscopic level. No mechanism for the production of almost 
parallel time displacements is proposed, and the consequences of this tentative proposal 
are still under investigation. 

Section 2 discusses the general six-dimensional special transformation, and 8 3 
shows how the usual four-dimensional theory emerges as a special case. Section 4 
introduces the necessary six-vectors, and the principle of conservation of six-momen- 
tum is introduced in § 5 .  In § 6 it is proved that a particle of non-zero rest mass MO can 
decay into a set of particles whose total rest mass can be greater or less than MO, and that 
particles of non-zero rest mass may be produced from the vaccum state. We take c = 1 
throughout the paper. 

0 

2. Basic properties of the transformation 

Let S and S’ be two inertial frames with spatial origins 0 and 0’ respectively, and let 
unprimed and primed symbols refer to quantities measured in S and S’ respectively. Let 
G be the 6 x 6 diagonal matrix 

-I 0 
. -(o I )  

where I is the 3 x 3  identity matrix, and let k =+1 and -1 for subluminal and 
superluminal transformations respectively. Then for space and time increments dx and 
dr it has been shown (Cole 1978) that 

where A is a 6 x 6 matrix with constant coefficients such that ATGA = k G .  This result 
ensures that 

(2.2) ldX’/’- ldt’1’ = k(ldx1’- Idti’). 
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Writing 
A P  

A = (  Q R ’  ) 
it follows that 

(2.3) 

and 
AAT-PPT= kl 

ATA - QTQ = kl  

R R ~ - Q Q ~ =  ki  

AQ= = P R ~  

(2.4) 
RTR - PTP = kl 

ATP = Q‘R. 

Further, if k = +1 then /A/  # 0 and /RI # 0; if k = -1 then /PI # 0 and IQ/ # 0. The work 
that follows has not been reported elsewhere. 

The motion of a particle may be specified in a frame by its velocity U = dx/dt where 
dt2 = /dfI2 = (dtl)’+ (dt2)’+ (dt3)’, and by the unit vector a = df/dt which represents 
the direction of its time displacement. This specification may be denoted by the 

six-component column vector . Let the motion of 0 be specified by the vectors 

in”,) and (:,:) in S and S’ respectively, and let the motion of 0’ be specified by the 

vectors ( ) and ( 0 ) in S and S’ respectively. Now let an infinitesimal increment 
ff0’ a 0’ 

U‘ d tb  
in S and 

(a0 dto) ( a b  dtb)  
in S ‘ ,  and let 

0 
along the world line of 0 have displacements 

( v dto,  ) i n s  
an infinitesimal increment along the world line of 0‘ have displacement 

and ( ) in S’ .  (In this paper, all vectors a, with and without primes or subscripts, 

denote unit vectors.) Substituting these two schemes in turn into (2.1) and its inverse 
using (2.3) and defining y = dto,/dtbt and y ’=  dtL/dto, one finds 

(YO’ dto, 

dtb,  

AU + Pao’= 0 

A ~ ~ ~ - Q ~ ~ &  = o 
(Yo’= ’ ~ ( Q u  + RcxO’) 

YU = -kQTub, 
yaor = k RTa b, 
kao = y’(-PT~’+RTtyb) 

y ‘ v ‘  = P a 0  

Y’CY b = RaO. 
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The matrices A, P, Q and R are thus given in terms of the velocity vectors U and U ’  and 
the time displacement vectors (YO, ab, ao’ and ab,  by relations (2.4) and (2.5). These 
can be combined to give 

and 

7 ~ ~ 0 , .  LYO = ky’abt.  ab. 

Thus for real transformations, k = +l if both 1 0 1  and I u ’ (  are less than 1, and k = -1 if 
both 1 0 1  and I u ’ (  are greater than 1. This result is consistent with the classification of 
subluminal and superluminal velocities. 

3. Link with four-dimensional relativity 

Now assume that in each frame all time displacements are in the same direction. On 
writing a0 = (YO’ = a and a b  = a b ,  =a’ ,  the results of the last section give y’ = ky, 
U” = u 2  and R a  = kya‘. Then transformation (2.1) with dt‘ = dt‘ a’ and dt = d t a  gives 
Q dx = (dt’- ky d t ) a ’  for each displacement dx. It follows that Q is such that for each 
vector f l  there exists a number p such that Qfl = pa ’ ,  which implies that IQ1 = 0 and 
k = +l. Thus the imposition of parallel time directions in each frame implies sublu- 
mina1 transformations. 

4. Six-vectors 

Covariant and contravariant six-vectors A ,  and B’ transform according to A: = 
(ax’/ax”)A, and B“ = (ax“/dx’)A’, with the usual extension to higher-order tensors. 
Raising and lowering indices can be defined using the metric six-tensor in the usual way, 

and the inner product is preserved. In particular, the displacement dx = 

six-dimensional space-time is a six-vector. 
Consider a frame S in which a particle moves instantaneously with three-velocity U 

and time displacement a, and let S’ be an instantaneous rest frame of the particle which 
is situated at 0’. Using (2.2) it is clear that dtb. is independent of the orientation of the 
time axes of S ’ ,  so that U = dx/dtb, is a contravariant six-vector, called the six-velocity. 
Then 

(3 in 

The six-acceleration is defined as 

the six-momentum is defined as 
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where mo is the rest mass of the particle, and the six-force is defined as 

F dP/dt& = moA. 

Then the result G,, dx, dx” = k(dtLO2 implies that U,U” = k, which in turn implies 
that F,UW = moA,Uw = 0. 

5. Conservation of six-momentum 

Consider a set of particles i = 1 , .  . . , N such that the ith particle has velocity ui, time 
vector ai and mass mi in frame S. Its six-velocity in S will be 

where ?(v i )  = [k i ( l -  u ? ) - ~ ] ~ ’ ~  and ki = *l. The following result then holds: if the law 
N 

miui = TT = constant 
i = l  

and (5.1) 
N 

miai = p = constant 
i = l  

holds in frame S then it holds in any other inertial frame if 

( i = l ,  . . . ,  N )  (5.2) m. = m. 
i roY(vi)  

where the mio are frame-independent scalars. 
This result is proved as follows: using (5 .2) ,  equations (5.1) can be written 

f mioU(;, = (i) = constant in S. 
i = l  

Then 

is constant in S’ for v = 1, . . . , 6 ,  so that (5.1) holds in S’. 
For subluminal particles, (5.2) is the usual velocity dependence of the mass, with mio 

being the rest mass of the ith particle. For superluminal particles the mass decreases 
from infinity at IuI = 1 to the value zero as /uI+cO. Law (5.1) corresponds to the 
conservation of six-momentum of the system. 

For a single particle of mass m = y ( v ) m o  in frame S, define the vector E = ma with 
magnitude E = ]E \  = m. The six-momentum of the particle is then 

P = ( m u )  = (3 
ma 

where p = mu is the three-momentum in S.  It follows from (5.2) that E 2  = p 2  + km;. 
The six-force on the particle is then 
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where f = dp/dto, is the three-force in S.  Thus 

which. gives d E  = f. v dtof = f .  dx. Thus E is interpreted as a vector energy. 

6. Particle decay 

In this section we consider only non-tachyon particles. A particle with rest mass MO, 
time vector a and zero three-momentum in the laboratory frame decays into n 
particles. The ith particle has rest mass MI, time vector a, and momentum p I  in this 
frame. The following results hold. 

(i) If MO = 0 (particle production from the vacuum state) then production is possible 
for any values of the MI provided n 2 3, while production is possible for n = 2 only if 
MI = M2. 

(ii) If MO # 0 then decay is possible for any values of the M, provided n 3 2. 
The proofs are as follows: conservation of six-momentum with k,  = 1 gives 

2 1 /2  Moa = ErW = -f (MT + P I  ) a, 
1 = 1  r = l  

and 
n 

o =  pi. 
i = l  

2 2  Consider the particular decay p1 = p z  = . . . = p z  = p 2 .  Then 
n 

i = l  
Moa = (M? + p y a i .  

In geometrical terms we only need to find a value of p such that an ( n  + 1)-sided closed 
circuit can be found with sides of lengths MO and (M? + ~ ~ ) " ~ ( i  = 1, . . . , n) .  If MO = 0 
we may take P ~ = Z ~ = ~ M T  provided n 2 3 ,  while if Mo#O we may take p 2 =  
MOz M?, for it is easily verified in each case that the sum of the lengths of any n 
edges is not less than the length of the remaining edge. Thus for arbitrary values of the 
Mi, particular decays have been found. For the case M = 0 and n = 2 we must have 
P I =  p ~ ,  a1 = - a 2  and M I  = M z  (arbitrary). This completes the proof. 

Thus on energetic grounds, the processes e- + n + p  + ve, e++ K+ + I;,, p + 

n + e t +  v,, p + p + n-' and p + n + n-+ are allowed in free space in the framework of 
six-dimensional special relativity, but not in the four-dimensional framework. The first 
decay predicts electron instability while the last three processes predict proton instabil- 
ity. The third process is predicted in the four-dimensional theory, but only in the 
presence of a nucleus. Proton instability is also predicted in SU(5) with a lifetime of 

Thus, in conclusion, observational evidence on planetary orbits and electron- 
proton stability points to the fact that, if time is more than one-dimensional, then it is 
highly directed in some way. One possible clue emerges: the last two decay processes 
can be accounted for by invoking the uncertainty principle AE At 5 h.  Thus it may be 
that time displacements are strongly directed along a common direction, with very small 

yr (Close 1979 and references therein). 
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deviations from this direction manifesting themselves only on a microscopic scale. The 
magnitude of these deviations will depend in some way on the value of t i .  Such a theory 
would allow a prediction of the uncertainty principle by considering the geometry of 
six-dimensional space--time with a restriction to very small deviations from a common 
time direction. This idea is under current investigation. 
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